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A theoretical study of the femtosecond spectroscopy of the NaI predissociation process under high-pressure
conditions is presented. We employ a statistical model to mimic the pressure dependence of pump/probe
signals for different rare gases. The model uses an ensemble of trajectories to approximate the quantum
dynamics of the wave packet, which is prepared by ultrashort pulse excitation. Predissociation is treated
within the Landau-Zener model for curve crossing. Collisions are modeled as instantaneous events assuming
hard sphere scattering. The collision probability is calculated statistically so that no adjustable parameter has
to be introduced. The results show how coherent wave packet motion is influenced by scattering processes
and how this is reflected in femtosecond pump/probe signals.

I. Introduction

The goal to observe chemical reactions that take place on
the femtosecond time scale in real time has been achieved today.
The pioneering work of Zewail and co-workers1 and other
research groups2-5 provided us with insight into the kinetics of
primary chemical reactions. Many reactions taking place in the
gas phase and liquid surroundings have been studied using the
techniques and ideas of femtochemistry.6

The predissociation of the NaI molecule has served as a
textbook example to study many basic features of scattering,7

high-resolution,7,8 and time-resolved spectroscopy.9 In particu-
lar, the electronic predissociation process that occurs after
excitation from the ionic ground state to a first excited state
has been studied in great detail in the time domain. Here, e.g.,
nonlinear transient effects,10 the control of chemical reactions,11

and the long-time behavior of wave packet motion12 have been
studied.

Whereas the above-mentioned experiments were conducted
under gas-phase conditions, more recent investigations examined
the influence of high-pressure rare gas environments on the
pump/probe signals for the NaI predissociation.13 Similar work
has been performed before by Zewail and co-workers, who
studied the dissociation and caging dynamics of iodine in rare-
gas solvents in the gas-to-liquid region.14-16

From a theoretical point of view, the correct treatment of
such processes is rather demanding. Ideally one should describe
the molecule that is observed in the experiment by the use of a
reduced density matrix description.17 One also might use
approximative quantum or mixed quantum/classical descrip-
tions.18 For some recent work with applications to molecular
systems, see, e.g., ref 19. Yet another approach is to perform
a full molecular dynamics simulation. Such calculations have
been performed simulating wave packet dynamics in various
surroundings.20-22 In the work of Apkarian, Martens, and co-
workers,20 the wave packet that is prepared by femtosecond
excitation is represented by many classical trajectories. The
present work follows this approach to describe the pump/probe
spectroscopy of NaI under high-pressure conditions: the wave
packet motion in the coupled electronic states of NaI is
approximated by bundles of classical trajectories. However,
we use a simpler method and do not explicitly solve the

equations of motion for the colliding atoms. This model was
applied before to some aspects of the NaI predissociation under
collision conditions,23 and the experimental results13 could be
explained. Here we present a full account of such dynamical
processes.

The paper is organized as follows: section II describes a
statistical model to monitor the wave packet dynamics, the
influence of collisions, and the calculation of pump/probe
signals. In section III we study the NaI-Ar system. Collisions
with other rare gas atoms are treated in section IV. The final
section V contains a summary of the paper and gives an outlook
to other applications.

II. Theory

We regard femtosecond excitation of NaI from its electronic
ground|0〉 to the excited state|1〉 (theΩ+ state). These states
of alike symmetry show an avoided crossing at a bond length
of 6.9 Å. Figure 1 illustrates the excitation scheme. The plot
indicates the center wavelength of a pump and a time-delayed
probe pulse. Under collision-free conditions the first pulse
prepares a wave packet at the inner potential wall of the excited-
state potential. The packet moves outward until the region
where the nonadiabatic coupling between the ground and excited
state is effective is reached. Then, the packet splits into a
component that moves into the asymptotic region (representing
the fraction of dissociated NaI molecules) and another one that
stays bound and is reflected at the outer turning point to return
into the inner potential region.

The motion of the wave packet is probed by excitation to an
excited electronic state|2〉 which decays via fluorescence. The
total fluorescence signal is proportional to the population in state
|2〉 prepared by the interaction of the sample with the pump
and probe pulse. An efficient population transfer|2〉 r |1〉 takes
place if the wave packet in state|1〉 is located in the Franck-
Condon window that depends on the probe excitation wave-
length. In our case this window is located left of the crossing
point region so that the detection monitors the decay of the
quasi-bound molecule.9

Our aim is to describe pump/probe signals that are influenced
by collisions with rare gas atoms. Instead of performing a full
molecular dynamics simulation or full quantum calculations,
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we will develop a statistical model that uses bundles of classical
trajectories to describe the NaI dynamics but does not explicitly
treat the NaI-rare gas collisions by solving the classical
equations of motion for the combined system; rather collisions
take place as instantaneous processes.

II.A. Unperturbed Motion. Quantum mechanically we
may calculate the function prepared in the pump process by
using first-order time-dependent perturbation theory. The
nuclear wave function in the upper state (denoted as|1〉 in what
follows) can be written as (atomic units are employed through-
out)

whereR is the bond length.ψ0 (R) is the initial vibrational
state in the electronic ground state|0〉. Un are the propagators
in the two states, and the molecule-field interactionW10(t)
describing the absorption process is given by

Hereµ10 is the projection of the transition dipole moment on
the laser polarization vector. The laser pulse is characterized
by its envelope functionf1(t) and frequencyω1.

In our model the quantum dynamics of this wave function is
represented by a set of classical trajectoriesRn(t), which are
chosen to represent the quantum mechanical probability distri-
bution. We assume a Gaussian envelope function for the pump
pulse so that its spectral width defines a Gaussian energy
distribution peaked at the energy corresponding toω1. Ac-
cording to the time and frequency distribution of the pulse, we
sample at random timestn and energiesεn. Trajectories are
started at timestn with zero momentum at the inner classical
turning point whereV1 ) εn. Within this method the classical
counterpart of eq 1 is

whereRn(t) are the trajectories with the initial conditions as
specified above. We emphasize that our trajectories are sampled
from a two-dimensional distribution, which is a function of
energy and time. This distribution is fixed by the properties of
the pump pulse, i.e., its time and frequency dependence.
Another possibility, which is most commonly employed in
classical simulations of quantum dynamics, is a sampling of
the Wigner function24 calculated from the ground-state vibra-
tional wave function. In both cases the sampling is performed
over initial conditions for coordinates and momenta. In this
sense both approaches, which are after all only recipes, are
equivalent. Our approach, which gives very good agreement
with quantum mechanics (see below), is somehow simpler and
does not have the problem that the sample function can become
negative like it is found for the Wigner function.24

In Figure 2 we compare the quantum to the classical
dynamics. Here the predissociation channel was disregarded
so that we treat dynamics in the upper adiabatic well exclusively.
The wave packet was calculated as described in ref 25 and
propagated with the split-operator method.26 Figure 2a shows
the coordinate distribution of the weighted trajectories at a time
of 4.2 ps for 500, 2000, and 50 000 sample points, respectively.
As expected, the curves become smoother with increasing
number of points. The deviation between the results for 2000
and 50 000 points are actually rather small so that the statistics
converges fast.

Figure 2b compares the highly oscillatory quantum mechan-
ical wave function with the classical trajectory swarm. The
normalization was chosen such that∫ d RF1

cl(R, t) ) ∫ d R|ψ1-
(R, t)|2 ) 1. The envelope of the quantum probability
distribution is astonishingly well reproduced. We not that the
functions are shown for a time after four vibrational periods
taking place in an extremely anharmonic potential. Calculating
the expectation value ofR we find 9.23 au in the quantum

Figure 1. NaI pump/probe excitation scheme. The center frequencies
of pump and probe pulse are indicated as vertical arrows. The Franck-
Condon window for the probe transition is marked on the horizontal
axis and the initial vibrational state is shown schematically.

Figure 2. (a) Classical trajectory distributionF1
cl(R, t) (eq 3) at time

t ) 4.2 ps, calculated for different numbersN of trajectories, as
indicated. (b) The modulus squared of the quantum mechanical wave
function (eq 1) is compared toF1

cl(R, t).

ψ1(R, t) ) 1
i ∫-∞

t
dt′ U1(t - t′) W10(t′) U0(t′) ψ0(R) (1)
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mechanical and 8.52 in the classical case, which is a very good
agreement taking the large extent of the wave function into
account. Furthermore, the wave function displayed in Figure
2b is already the worst case in the sense that standing wave
features are found that cannot by any means be represented by
a distribution of classical trajectories. Overall, the results
strengthen our assumption that we might simulate the pump/
probe experiments classically as was shown before in other
cases.27

The fluorescence signal for pump/probe excitation at timeT
is proportional to the populationI2(T) created by the probe pulse
in state|2〉. In the Appendix it is shown that the pump/probe
signal can be approximated by the expression

HereD(Rn(t)) is the differenceV2 - V1 between the potentials
of the states|2〉 and |1〉, calculated at the position of thenth
trajectory at timet. F(D(Rn(t)) - ω2) is the Fourier transform
of the pulse envelope function with respect to the argument
D(Rn(t)) - ω2. Similar expressions for the pump/probe signal
have been used before in numerical simulations.20 For a
derivation using the semiclassical limit of the Liouville formal-
ism, see ref 28.

Let us next turn to molecular collisions.
II.B. AB + C Collisions. In what follows we regard only

quasi-collinear collisions in which rare gas atoms can collide
either from the Na or I side of the diatomic molecule. This
means that the momenta of Na (or I) and the incoming atom
are parallel to each other. Let us describe a general AB+ C
collision, so that C collides with atom B only. The calculation
of the pump/probe signal within our statistical model proceeds
as follows:

1. A trajectoryRn(t) is chosen to describe the relative motion
of AB.

2. The center of mass momentumpAB of the molecule AB
and the momentumpC of the atom C are chosen via Monte
Carlo sampling from a Maxwell-Boltzmann distribution re-
flecting the experimental conditions.

3. The collision probabilityPsc at time∆t is assumed to be
proportional to the time interval∆t, the relative velocityVBC

between the atoms B and C, the hard sphere cross sectionσ )
π(rB + rC)2, and the density of C atoms. Since in the
experiments to be described the AB density is negligible
compared to the C density, AB-AB collisions are neglected.

4. We calculate the collision probabilityPsc at each time
step. If a negative probability is found (which happens for
negative relative velocities of the collision partners), the
trajectory is integrated for another time step without any
modifications. For positive probability we choose a random
numbers from the unit interval and ifPsc < s the trajectory is
integrated for the next time step.

5. In the casePsc > s the momentum transfer along the
internuclear axis of the molecule, (PB, PC) f (P′B, P′C), is
calculated in the rest frame of the (B, C) center of mass. To
this end the impact parameterb is chosen at random according
to the distributionf(b) db ) b/σ. A brief and simple calculation
shows that the momentum transfer is uniformly distributed in
the interval [0,∆pmax], where the maximal momentum transfer
∆pmax is obtained in the case of a central collision. The
perpendicular component of the momentum transfer is ignored.
Hence our model overestimates the energy loss in the NaI
internal motion by ignoring rotational excitation.

6. The trajectory is integrated further in time with the new
kinetic energy calculated from the energy transfer during the
collision.

7. If the crossing point between the two potential curves is
passed during a time step, the hopping probability is calculated
using the Landau-Zener formula29

whereµ is the reduced mass of BC and in our caseF ) 0.503
au. A random numbersh is taken from the unit interval, and if
PLZ > sh the potential curve is changed and the integration for
the next step is performed on this potential.

8. The signal is calculated according to eq 4.
The generalization to treat AB+ C and C+ AB collisions

simultaneously is straightforward. In the above point 4, the
collision probabilities for both collisions are calculated. If both
are larger than the random number, both collisions occur
simultaneously and the change in velocity of both atoms A, B
is taken into account.

We now turn to the numerical results obtained from our
statistical model in describing the pump/probe spectroscopy of
NaI in various rare gas environments.

III. The NaI -Ar System

In what follows we will describe NaI molecules that are
excited with ultrashort laser pulses and afterward collide with
Ar atoms under different experimental conditions. We will
regard two situations where in the first case the motion in the
excited electronic state is probed and in the second case the
dynamics in the lowest adiabatic, i.e., the ground electronic state,
is probed.

III.A. Excited-State Dynamics. In this section we regard
NaI-Ar collisions under different pressure conditions. The
temperature is set to 960 K as it was fixed in recent experi-
ments.13 The pump pulse has a width of 50 fs and a center
wavelength of 320 nm. For the probe pulse the same width
was taken but the wavelength was 620 nm. The Franck-
Condon window for the probe transition, where the excitation
probability is maximal, is located at distances shorter than the
crossing point region and is marked in Figure 1. We sampled
104 initial trajectories to calculate the pump/probe signals that
are displayed in Figure 3. The pressure enters in our calculation
through the Ar density, which appears in the formula for the
collision probability. The Ar density is related to the pressure
via the ideal gas equation. To calculate the hard sphere cross
section we used Lennard-Jones radii taken from ref 30 forNa+

andI- ions. Since these numbers may slightly differ from the
“best” hard sphere radii, the numbers given for the pressure
are not to be seen as extremely accurate.

For zero pressure a signal is obtained that reflects the quasi-
bound motion of the wave packetψ1

9,31 (Figure 3, upper panel).
The doublet in the single peaks appears since the packet passes
the Franck-Condon window on its way in- and outward.32,31

With increasing pressure, the periodic signal that occurs for 0
bar pressure is destroyed earlier and an increasing background
arises. The strong modification of the signal through the
collision processes has to be anticipated, but let us analyze the
behavior of the signals more carefully.

The first observation is the occurrence of a peak around 0.7
ps that appears clearly for pressures above 210 bar. The height
of the peak rises with increasing pressure. This feature is due
to trajectories that have undergone collisions. Upon a collision
the NaI relative motion loses energy, which reduces the classical

I(T) )
1

N
∑
n)1

N ∫-∞

∞
dt f(x2(t - T)) F(D(Rn(t - T)) - ω2) (4)

PLZ ) e-(2µ)1/2F/VBC (5)
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period so that the classical orbits return to the Franck-Condon
window much earlier. A calculation shows that over a large
energy interval (for energies in the range between 0.15 and 0.55
eV) the classical period remains almost constant at a value of
about 0.8 ps. This means that the position of the peak does
not change essentially over a broad distribution of pressures.

The behavior of the signal for long delay times and for
different pressures is quite interesting. As a trend we notice
that the intensity of the asymptotic signal increases relative to
the height of the first peak around zero delay times, which is
the same under all pressure conditions regarded here. The
underlying process is a collisional stabilization since it means
that less NaI molecules predissociate with increasing collision
probability. It is easy to rationalize that under high-pressure
conditions the NaI relative motion is relaxed toward lower total
energy. As a consequence the Landau-Zener probability (eq
5) for dissociation is reduced. Thus, through a loss of energy
during the scattering process the NaI molecules are more stable
than under collision-free conditions. The effect can be seen
more clearly in the long-time behavior of the pump/probe signal
as displayed in Figure 4. Curves are shown for a time interval
ranging up to 20 ps and for three different pressures, as
indicated. The asymptotic signal, reflecting the number of
molecules that are still bound, shows that with increasing
pressure more molecules remain bound and thus do not
predissociate.

As a complementary information we might look at the
population of the fragment channel and calculate the fraction
of the total number of trajectories that enter the asymptotic
region through the hopping process as a function of time.
Curves for different pressures are displayed in Figure 5.
Collisions of free Na or I atoms with Ar are not regarded here.
The characteristic step functions, as detected in the zero pressure
case,9,31 show a sudden increase of fragment population each

time the wave packet passes the crossing point region on its
way outside. The height of the steps directly reflects the
nonadiabatic coupling strength. An increase in pressure in-
creases the efficiency of the energy loss process so that the NaI
molecules become more stable with respect to dissociation. This
is demonstrated most dramatically in the case of 800 bar pressure
where less than 10% of the molecules are found in the
fragmentation channel at long times. To understand the energy-

Figure 3. NaI-Ar collisions. Pump/probe signals detecting the excited-
state dynamics are shown for different Ar pressures. The uppermost
curve corresponds to the unperturbed NaI motion.

Figure 4. Same as Figure 3 but for longer delay-times.

Figure 5. NaI-Ar collisions: fragmentation yield of NaI as a function
of time for different pressures, as indicated.
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transfer process in more detail we calculate the mean energy of
the bound excited NaI molecules defined as

whereH1 is the classical Hamilton function corresponding to
the excited electronic state andN1 is the number of trajectories
in this state.

Figure 6 displaysE1(t), calculated under different pressure
conditions. In the zero pressure limit a constant curve at a value
slightly less than 0.81 eV, which corresponds to the mean energy
of a wave packet prepared by a 320 nm excitation, is found.
Already at 60 bar pressure the energy loss process is quite
efficient. The curve shows that the energy transfer takes place
at certain time intervals only, which is due to our assumption
that the collision probability is proportional to the relative
velocity of the Ar atom and its collision partner so that as long
as the bond length increases rapidly the collision probability is
large. The trend which can be taken from the curves is that
with increasing pressure the energy transfer takes place earlier
and is more efficient. In the case of 800 bar the total energy of
NaI after 5 ps is less than 10% compared to the initial energy.
Since in this case the total energy is rather small for long times,
the relative motion of the atoms in the molecule with respect
to the argon atom does not differ very much during in- and
outward motion in the molecule, which has the consequence
that the distinct steps disappear in theE1(t) curve. Another
reason for this behavior is the occurrence of multiple collisions,
which cause the trajectories to move out of phase.

Let us next discuss the signal obtained for a pump excitation
wavelength of 280 nm. In this case, the mean initial energy of
the moving wave packet is much higher and the vibrational
period is about 2.4 ps, as can be seen in the zero pressure curve
in Figure 7. Since the mean peaks now are well-separated, the

additional structures appearing at higher pressures can be seen
far more clearly compared to the 320 nm case displayed in
Figure 3. With increasing wavelength the peaks due to
collisions shift in the vicinity of the peak that stems from the
unperturbed motion, and it will be difficult to separate them
experimentally. As a consequence we conclude that the effect
of the collisions are better studied for lower excitation wave-
lengths.

Finally we note that in the NaI-Ar collision system the
temperature dependence of the pump/probe signals is not
dramatic as long as the density of the rare gas atoms is kept
constant. This comes about since the kinetic energy of the
relative motion in NaI is so much higher than the kinetic energy
of the thermal motion of argon (1 eV compared to 0.1 eV at
960 K).

III.B. Ground-State Dynamics. In the previous section we
considered the wave packet motion in the upper adiabatic state
displayed in Figure 1. The total wave function has a second
component that belongs to the lower adiabatic state of the
problem. The dynamics of this nuclear component and its
modification through collisions will be discussed in what
follows. We note that in order to get converged results about
105 trajectories have to be used in the simulation. This is an
order of magnitude larger than in the case of the excited-state
dynamics since only a small fraction of trajectories enter the
ground state. To monitor the motion we use a probe pulse of
470 nm and assume a direct transition|2〉 r |0〉. For this
wavelength, the Franck-Condon window is the same as used
in section III.A, i.e., the one that is marked in Figure 1. Signals
obtained under different pressure conditions are displayed in
Figure 8. In the unperturbed case the quasibound vibrational
motion is seen in the plot. Also, at longer times the noise on
the curves shows that the statistics is still not good enough.
Compared to the excited-state dynamics (Figure 3), we observe
that the first peak around 1 ps is missing in the signal since the
first time the ground-state wave packet reaches the probe

Figure 6. Energy relaxation induced by Ar collisions in the excited
electronic state of NaI. The mean energyE1(t) (eq 6) is shown for times
up to 6 ps.

E1(t) )
1

N1
∑

n

H1(Rn(t)) (6)

Figure 7. Pump/probe signals for the excited-state dynamics at different
Ar pressures and a pump wavelength of 280 nm.
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window occurs after the curve crossing on the way inward. The
collision processes now have a different effect on the signal:
with increasing pressure the asymptotic signals decrease,
contrary to what is found for the probe of the excited-state
dynamics. The periodic behavior stems from the returning wave
packet in the upper state; i.e., the population in the ground state
is increased during the passing of this high-energy component.
The collisions now have two effects. First, the dissociation
channel is closed through energy loss in the excited state (see
section III.A). Thus there is no longer a population transfer to
the ground state. Second, the collisions induce an effective
vibrational relaxation in the electronic ground state so that the
corresponding trajectories become trapped. Since much energy
is transferred from the molecule to the colliding atoms, the
vibrational energy decreases and the probe window is no longer
reached by the trajectories so that the periodicity is lost and the
signal approaches zero. A calculation of the mean classical
energyE0(t) (eq 6 for the classical Hamilton functionH0 of the
ground state) shows that with increasing pressure more and more
energy is lost and, for 800 bar, the sample of molecules
approaches thermal equilibrium in the ground state.

In summary we conclude that an observation of the ground-
state component of the total wave function yields information
about the vibrational energy relaxation and thus gives hints about
the nature of the energy-transfer processes between the predis-
sociating molecules and the surrounding atoms.

IV. NaI -X (X ) He, Xe) Collisions

Let us now regard other noble gases as collision partners with
the NaI molecule. Within our model two modifications have
to be made if the atomic collision partners are replaced: besides
the different mass the initial momenta of the noble gas atoms
have to be replaced. Furthermore the hard sphere cross section
that enters into the collision probability changes.30

Figure 9 compares pump/probe signals for He, Ar, and Xe
collisions at 400 bar pressure. Here we consider probe signals
resulting from the excited-state dynamics. At a first glance the
curves are very similar. In particular the peaks in the signals
occur at the same times and are of similar shape. A closer look,
however, shows that with increasing mass of the rare gas atoms
the asymptotic signal increases. This can be understood by
analyzing the time evolution of the mean energyE1(t) of the
bound NaI complex. This function is shown in Figure 10.
Clearly, the energy relaxation due to the collisions is more
effective for heavier rare gas atoms. As a consequence the
stabilization effect that stems from a blocking of the dissociation
channel for small energy (see section III.A) is of minor
significance in the helium case. Thus the magnitude of the long-
time signal is a direct measurement of the averaged energy
transfer taking place in the collision processes. On the other
hand, the curves show that the mere effect of the collisions is
that the trajectories describing the NaI wave packet motion are
influenced to get out of phase so that additional structures in
the pump/probe signals occur. For other pressures similar trends
are observed.

V. Summary and Outlook

We have presented a detailed numerical study of the NaI
predissociation process, which is initiated by femtosecond pulses
and is influenced by collisions with rare gas atoms. The
calculations combine classical and statistical methods and do
not use any adjustable parameter. Samples of classical trajec-
tories are used to represent the quantum mechanical wave

Figure 8. Pump/probe signals detecting the ground-state dynamics of
NaI at different Ar pressures.

Figure 9. Comparison of pump/probe signals for collisions with
different rare gas atoms. The signals belong to the excited-state
dynamics at a pressure of 400 bar.

Figure 10. Mean energy of NaI in its excited electronic state (eq 6)
for different rare gas collision partners.
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packet, which is prepared through femtosecond excitation in
the NaI molecule. These trajectories are influenced by collisions
with surrounding rare gas atoms. The scattering process is
treated to occur statistically and with the hard sphere cross
section. In this way no classical trajectories for the environment
have to be integrated. Of course this model neglects the possible
change of the potential curves of NaI due to the interaction with
the rare gas atoms. This especially might change the Franck-
Condon window for the probe transition. We expect the
influence on the neutral-neutral transition that detects the
dynamics in|1〉 to be rather small whereas the transition from
the ionic ground state|0〉 is certainly more sensitive to the three-
body interaction.

The excited NaI molecule loses energy of the relative motion
in the collision processes. This vibrational relaxation yields
two observable effects. First, the vibrational period of some
molecules becomes smaller so that additional structures appear
in the pump/probe spectra compared to the signal obtained in
the unperturbed case. As a consequence, the coherent signal is
washed out and the periodicities are lost for longer times.
Second, since the dissociation probability decreases with
decreasing energy the molecules become more stable with
respect to fragmentation. For longer wavelengths of the pump
pulse, where the vibrational period of the quasi-bound motion
is longer, the effects of the collisions can be resolved more
clearly. Whereas this effect is pronounced, the change of the
temperature for fixed pressure does not result in any visible
effect in the pump/probe signals. The quantum dynamics in
the electronic ground state for high pressure is also strongly
influenced by vibrational relaxation processes. For high enough
pressures the system approaches thermal equilibrium, and a
signal that detects vibrational motion in high vibrational states
vanishes accordingly. Results for different rare gas environ-
ments show that a rather similar behavior of time-resolved
fluoresesence signals is to be expected. Although the average
energy transfer in NaI-He collisions is less than what is found
in the NaI-Xe case, the signals for the two cases differ mainly
in their asymptotic behavior.

Here we did not consider recombination processes. Within
the present quasi-one-dimensional model these events will take
place at some point. Here an extension of the theoretical
description is necessary. Work in this direction is in progress.34

We believe that the approach presented here to treat collision
processes between atoms and molecules prepared by coherent
femtosecond excitation offers a valuable tool to achieve an
insight into these dynamical process.
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Appendix

In what follows we derive the expression for the pump/probe
signal I2(T) as used in our simulation.

The fluorescence signal for pump/probe excitation at timeT
is proportional to the population in state|2〉, which is (within
first-order perturbation theory)

The interaction energy here is

with the same notation as used in section II. In what follows
we assume the Condon approximation so thatµ21 is a constant.
Introducing the difference potentialD ) V2 - V1, eq 7 may be
written as

Here we shifted the time origin to the center of the pulse, i.e.,
the delay timeT. To a first approximation we may neglect the
commutator [H1, D], which results in the expression

where we used the Fourier transform

and dropped all constants. The above expression is very useful
since the excitation process does not have to be treated
explicitly: the signal is proportional to the norm of the initial
state at the pulse center, multiplied with a coordinate-dependent
weight function.35 The approximation does not account for the
motion of the wave packetψ1 during the excitation process.
This effect can be accounted for by extending the above
approximation. In doing so we perform a splitting of the
exponential operator containingH1 + D

which is correct up to second order.36 Inserting this splitting
into eq 9 yields

A change of the variables (t1 ) (t + t′)/2, t2 ) t - t′) yields the
population

In our simulation we assume Gaussian pulses of the form

which have the property

Since the pulse is of finite length, we may extend the limits of
the integrals to infinity so that the integration overt2 may be
performed as

P2(T) ) 〈ψ2(T)|ψ2(T)〉 ) ∫-T

T
dt ∫-T

T
dt′ 〈ψ(1-T)|U1

†(t +

T) W21
* (t) U2(t - t′) W21

/ (t′) U1(t′ + T)|ψ1(-T)〉 (7)

W21(t) ) - 1
2

µ21e
-iω2t f(t) (8)

I2(T) ) ∫-T

T
dt ∫-T

T
dt′ W21

/ (t) ×
W21(t′)〈ψ2(0)|U†

1(t)e
-i(H1+D)(t-t′)U1(t′)|ψ1(0)〉 (9)

〈ψ2(T)|ψ2(T)〉 ∼ ∫ dR |F(D(R) - ω2)|2|ψ1(0)|2 (10)

F(D(R) - ω2) ) ∫-T

T
dt f(t)ei(D(R)-ω2)t (11)

e-iH1(t-t′)-iD(t-t′) ∼ e-iH1(t-t′)/2e-iD(t-t′)e-iH1(t-t′)/2 (12)

I2(T) ) ∫-T

T
dt ∫-T

T
dt′ W21

* (t) ×
W21(t′) 〈ψ1(t + t′

2 )|e-iD(t-t′)|ψ1(t + t′
2 )〉 (13)

I2(T) ) ∫-T

T
dt1 ∫-T

T
dt2 f*(t1 +

t2
2) f(t1 -

t2
2) ×

〈ψ1(t1)|e-i(D-ω2)t2|ψ1(t1)〉 (14)

f(t) ) e-t2/(2σ2) (15)

f(t1 +
t2
2) f(t1 -

t2
2) ) f(x2t1) f( t2

x2) (16)

F̃(D(R) - ω2) ) ∫-∞

∞
dt2 ei(D(R)-ω2)t2 f( t2

x2) (17)
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Finally, the pump/probe signal at delay timeT takes the form

A comparison of this formula to the lower order approxima-
tion ref 9 shows that the wave packet motion ofψ1 is included
by a temporal average over its motion during the excitation
process. We note that eq 18 represents the best approximation
to the signal that does not need phase information.

The pump/probe signal calculated with the classical trajec-
tories now is obtained as

where the time origin was shifted back tot ) 0.
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I(T) ) ∫-∞

∞
dt f(x2t) ∫ dR|ψ1(t)|2 F̃(D(R) - ω2) (18)

I(T) )
1

N
∑
n)1

N ∫-∞

∞
dt f(x2(t - T)) F̃(D(Rn(t - T)) - ω2) (19)
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